## Note

# Every 4-Regular Graph Plus an Edge Contains a 3-Regular Subgraph

N. ALON\*

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts

### S. FRIEDLAND

Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel

AND

#### G. KALAI\*

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts

Communicated by the Managing Editors

Received July 25, 1983

Let G = (V, E) be a 4-regular loopless graph plus an edge with  $\lfloor V \rfloor = n$  vertices and  $\lfloor E \rfloor = m = 2n + 1$  edges. (G may contain multiple edges.) Let  $a_j^{(i)}$  be the (j,i)th entry of its (vertex, edge)-incidence matrix. As shown below, Chevalley's classical theorem implies that there exists  $\phi \neq I \subseteq \{1, 2, ..., m\}$  such that

$$\sum \{a_j^{(i)} : i \in I\} \equiv 0 \pmod{3}, \qquad (j = 1, 2, ..., n). \tag{1}$$

Hence G contains a 3-regular subgraph. Note that a graph on 3 vertices with 2 parallel edges between any two shows that the "plus an edge" cannot be omitted.

<sup>\*</sup> Research supported in part by the Weizmann Fellowship for Scientific Research.

CHEVALLEY'S THEOREM. [3] For j = 1, 2,..., n let  $F_j(x_1,...,x_m)$  be a polynomial of degree  $r_j$ . Suppose  $\sum_{j=1}^n r_j < m$ . If p is a prime and the system of congruences

$$F_i(x_1, x_2, ..., x_m) \equiv 0 \pmod{p}$$
  $(j = 1, 2, ..., n)$ 

has one solution then it has at least two solutions.

Proof of (1). Consider the system of congruences

$$\sum_{i=1}^{m} a_j^{(i)} x_i^2 \equiv 0 \pmod{3} \qquad (j = 1, 2, ..., n).$$

Since 2n < m and 0 is a trivial solution, Chevalley's Theorem implies the existence of a nontrivial solution x. Let I be the set of indices of its nonzero coordinates. Then  $\phi \neq I \subseteq \{1, 2, ..., m\}$  and if  $i \in I$ ,  $x_i^2 \equiv 1 \pmod{3}$ . Hence (1) holds as required.

Remark. The result mentioned in the title is related to the well known Berge-Sauer conjecture [2], which has recently been proved [4]. In [1] we apply Chevalley-type theorems to prove more general graph theoretical results. Since the proofs in [1] are somewhat complicated, while the basic idea is very simple, we follow the referee's suggestion and publish this communication separately.

#### REFERENCES

- N. ALON, S. FRIEDLAND, AND G. KALAI, Regular subgraphs of almost regular graphs, J. Combin. Theory Ser. B 37 (1984), 79-91.
- J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications," p. 246, Macmillan & Co., London, 1976.
- Z. I. Borevich and I. R. Shafarevich, "Number Theory," Chap. 1, Academic Press, New York, 1966.
- V. A. Taŝkinov, Regular subgraphs of regular graphs, Soviet Math. Dokl. 26 (1982), 37–38.