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Note

Every 4-Regular Graph Plus an Edge Contains
a 3-Regular Subgraph
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Let G=(V,E) be a 4-regular loopless graph plus an edge with |V|=n
vertices and |E|=m =2n+ 1 edges. (G may contain multiple edges.) Let
a!” be the (j,i)th entry of its (vertex, edge)-incidence matrix. As shown
below, Chevalley’s classical theorem implies that there exists ¢ #/<
{1, 2,..., m} such that

Z{ai}i>:i€1}50(mod3), (j:l,2,...,n). (1)

Hence G contains a 3-regular subgraph. Note that a graph on 3 vertices with
2 parallel edges between any two shows that the “plus an edge” cannot be
omitted.
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CHEVALLEY'S THEOREM. [3] For j=1,2,.,n let Fjx,,..,x,) be a
polynomial of degree r;. Suppose y!_, r; < m. If p is a prime and the system
of congruences

Fi(x,, X3 X)) = 0 (mod p) (r=NIn2s . n)

has one solution then it has at least two solutions.

Proof of (1). Consider the system of congruences

> a{’x} =0 (mod 3) (=82 ).

i=1

Since 2n < m and 0 is a trivial solution, Chevalley’s Theorem implies the
existence of a nontrivial solution x. Let I be the set of indices of its nonzero
coordinates. Then ¢ # I < {1,2,..,m} and if i € I, x?= 1 (mod 3). Hence (1)
holds as required.

Remark. The result mentioned in the title is related to the well known
Berge—Sauer conjecture [2], which has recently been proved [4]. In [1] we
apply Chevalley-type theorems to prove more general graph theoretical
results. Since the proofs in [1] are somewhat complicated, while the basic
idea is very simple, we follow the referee’s suggestion and publish this
communication separately.
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